CS 4530: Fundamentals of Software Engineering

Module 11.1: Distributing Processing

Adeel Bhutta, Mitch Wand
Khoury College of Computer Sciences

© 2024 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Goals for this Lesson

* By the end of this lesson, you should be
able to...

« Recognize a few common software
architectures

« Discuss some of the tradeoffs of scalability,
performance, and fault tolerance between
these architectures

Distributed Software Architectures

« Goal: abstract details away into reusable
components

» Enables exploration of design
alternatives

 Allows for analysis of high-level design
before implementation

« Match system requirements to quality
attributes of common architectural

patterns

Review: Challenges of Distributed Systems

* More machines mean more links that can
fail
* Networks introduce delays

* Networks still fail, intermittently and for
long periods

* Networks rely on fallible external
administrators

« Sequential consistency is impossible

Questions to Ask About Distributed
Architectures?

« How many individual pieces can fail before the whole
fails? Who is responsible for those pieces?

« How complicated is it...

« To operate?
* To debug?
* To set up a development environment?

« How much CPU/RAM/bandwidth is needed to run it?
(in total and per-node)

« What is the strategy for increasing capacity?

A brief survey of distributed architectures

1. Monolithic server

2. Tiered architectures

3. Pipeline architectures

4. Microservice architectures

1. The Monolith Architecture Relies on a Single
Server

« Simplest answer to consistency problem:
have only one server, one source of truth

« Still “distributed” in that we have many
clients

« Sacrifices:
« Scalability
 Performance
« Fault tolerance

Server

Client Client Client Client Client

Monolithic Architectures Struggle to Scale

« Scalability - How to go from 10
to 100 to 1,000 clients?

 Performance - How to access
100’s of GB of data
concurrently? Server

* Fault tolerance - What if server
crashes?

Client Client Client Client Client

Replication Alone is Not The Answer

« Constraints:
« Latency: Speed of light (~1ns/ft)

 Throughput: Long-distance links between
servers are relatively low throughput (10’s of
Gbps, compare to 100's of Gbps within a single
server)

* Tradeoffs for replication, particularly over
long distances:
» Replication will add latency, not reduce it

» Usually not enough bandwidth to maintain
replication of all data across all nodes

2. Tiered Architectures

« Key idea: Partition the system
into distinct tiers based on
responsibilities

» Each tier scales independently
of the others - .com need not
know about .org

« Satisfying a single request may
require multiple tiers

* DNS is a tiered architecture

« Example: scale .com
differently from .gov

IIIIII

Administrational

LLLLL

Managerial
LLLLL

rrrrrrrrrrr

A tiered architecture is like a layered
architecture, only distributed

[Elassruums] [Faculty] [Advisurthat]

|GetTimeTab!e| FﬁetTranscripf | Funding l | ChatSession |
S——
|5cheduleﬂmm| Teachingload | FeesCalc l | Enroll |

Endpoints Students

Business logic

N,

e

r
]"I
o

DEITEI_EIEEESS Student Course Resource || ChatSession Payment
objects Department || FacultyMember Grade Event

Yo

11

3. Pipeline Architectures

 The pieces correspond to stages in the
transformation of data in the system

« Good for complex straight-line
processes where multl{:) e stages
applied to different data, concCurrently

Partition

 Each stage in the pipeline takesan : 2 P :
input, produces an output: otherwise , , , , ,
stateless N N 3

- Example: Map/Reduce splits data, \\ \ Mbine

filters it through stages, then combines

 Pipeline architecture allows flexibility in
mapping stages to physical servers

Pipeline Architectures

« Scalability/Performance:

« Add more machines to process more
data in parallel

« Limited by bandwidth to transfer
inputs/outputs between stages

 Fault tolerance: Each stage in
pipeline is stateless. If one fails,
it can be repeated elsewhere.

Partition

4. Microservice Architectures

« Organize implementation around components
(responsibilities)

« Each component is implemented independently

 Each component is
« independently replaceable,
« independently updatable

« Components can be built as libraries, but more
usually as web services

« Services communicate via a well-defined protocol
(typically REST/http, though others are possible)

Microservices: Schematic Example

Different languanes,
different OP@Vﬁ+iW@ _> NodelS MonﬁODB Google Service Java, MySQL
I

systems

REST service REST service REST service

Productivity App

Database Database

Database

Frontend REST

Search Engine Analytics Social Crawler

“Dumb”

App Server

REST service REST service REST service

Database Database Database

Java, Neod) C#, SQLServer Python, MongoDB

Microservices are (a) highly scalable and (b)
trendy

« Microservices at Netflix:
e 100s of microservices Netflix architecture
1000s of daily production changes Rgi e
10,000s of instances
« BUT:
only 10s of operations engineers

https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-
every-time-you-hit-play-3a40c9be254b

https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b

Microservice Advantages and Disadvantages

« Advantages

« services may scale differently, so can be
implemented on hardware and software
appropriate for each

 services are independent (yay for
interfaces!) so can be developed and
deployed independently

« Disadvantages
« Shared data?
« Requires high availability
« Service discovery?
« Data consistency?
« Overall system complexity

Microservices vs Monoliths

for less-complex systems, the extra
baggage required to manage
microservices reduces productivity

as complexity kicks in,
productivity starts falling
rapidly

higher is better the decreased coupling of
microservices reduces the

attenuation of productivity

Productivity
Microservice

Monolith

Base Complexity

but remember the skill of the team will
outweigh any monolith/microservice choice

https://martinfowler.com/microservices/

https://martinfowler.com/microservices/

Learning Goals for this Lesson

* You should now be able to

« Recognize a few common software
architectures

« Discuss some of the tradeoffs of scalability,
performance, and fault tolerance between
these architectures

	CS 4530: Fundamentals of Software Engineering��Module 11.1: Distributing Processing
	Learning Goals for this Lesson
	Distributed Software Architectures
	Review: Challenges of Distributed Systems
	Questions to Ask About Distributed Architectures?
	A brief survey of distributed architectures
	1. The Monolith Architecture Relies on a Single Server
	Monolithic Architectures Struggle to Scale
	Replication Alone is Not The Answer
	2. Tiered Architectures
	A tiered architecture is like a layered architecture, only distributed
	3. Pipeline Architectures
	Pipeline Architectures
	4. Microservice Architectures
	Microservices: Schematic Example
	Microservices are (a) highly scalable and (b) trendy
	Microservice Advantages and Disadvantages
	Microservices vs Monoliths
	Learning Goals for this Lesson

