
CS 4530: Fundamentals of Software Engineering

Module 11.1: Distributing Processing

Adeel Bhutta, Mitch Wand
Khoury College of Computer Sciences

1

© 2024 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/


Learning Goals for this Lesson
• By the end of this lesson, you should be 
able to…

• Recognize a few common software 
architectures

• Discuss some of the tradeoffs of scalability, 
performance, and fault tolerance between 
these architectures



Distributed Software Architectures
• Goal: abstract details away into reusable 
components

• Enables exploration of design 
alternatives

• Allows for analysis of high-level design 
before implementation

• Match system requirements to quality 
attributes of common architectural 
patterns



Review: Challenges of Distributed Systems
• More machines mean more links that can 
fail

• Networks introduce delays
• Networks still fail, intermittently and for 
long periods

• Networks rely on fallible external 
administrators

• Sequential consistency is impossible

4



Questions to Ask About Distributed 
Architectures?
• How many individual pieces can fail before the whole 
fails? Who is responsible for those pieces?

• How complicated is it…
• To operate?
• To debug?
• To set up a development environment?

• How much CPU/RAM/bandwidth is needed to run it? 
(in total and per-node)

• What is the strategy for increasing capacity?

5



A brief survey of distributed architectures
1. Monolithic server
2. Tiered architectures
3. Pipeline architectures
4. Microservice architectures

6



1. The Monolith Architecture Relies on a Single 
Server
• Simplest answer to consistency problem: 
have only one server, one source of truth

• Still “distributed” in that we have many 
clients

• Sacrifices:
• Scalability
• Performance
• Fault tolerance

Server

Client Client Client Client Client



Monolithic Architectures Struggle to Scale
• Scalability - How to go from 10 
to 100 to 1,000 clients?

• Performance - How to access 
100’s of GB of data 
concurrently?

• Fault tolerance - What if server 
crashes?

Server

Client Client Client Client Client



Replication Alone is Not The Answer
• Constraints:

• Latency: Speed of light (~1ns/ft)
• Throughput: Long-distance links between 

servers are relatively low throughput (10’s of 
Gbps, compare to 100’s of Gbps within a single 
server)

• Tradeoffs for replication, particularly over 
long distances:
• Replication will add latency, not reduce it
• Usually not enough bandwidth to maintain 

replication of all data across all nodes



2. Tiered Architectures
• Key idea: Partition the system 

into distinct tiers based on 
responsibilities

• Each tier scales independently 
of the others - .com need not 
know about .org

• Satisfying a single request may 
require multiple tiers

• DNS is a tiered architecture
• Example: scale .com 

differently from .gov



A tiered architecture is like a layered 
architecture, only distributed

11



3. Pipeline Architectures
• The pieces correspond to stages in the 

transformation of data in the system

• Good for complex straight-line 
processes where multiple stages 
applied to different data, concurrently

• Each stage in the pipeline takes an 
input, produces an output: otherwise 
stateless

• Example: Map/Reduce splits data, 
filters it through stages, then combines

• Pipeline architecture allows flexibility in 
mapping stages to physical servers

Combine

Result

Stage 3 Stage 3 Stage 3 Stage 3 Stage 3

Stage 2 Stage 2 Stage 2 Stage 2 Stage 2

Stage 1 Stage 1 Stage 1 Stage 1 Stage 1

Partition

Big Data (lots of work)



Pipeline Architectures
• Scalability/Performance:

• Add more machines to process more 
data in parallel

• Limited by bandwidth to transfer 
inputs/outputs between stages

• Fault tolerance: Each stage in 
pipeline is stateless. If one fails, 
it can be repeated elsewhere. Combine

Result

Stage 3 Stage 3 Stage 3 Stage 3 Stage 3

Stage 2 Stage 2 Stage 2 Stage 2 Stage 2

Stage 1 Stage 1 Stage 1 Stage 1 Stage 1

Partition

Big Data (lots of work)



4. Microservice Architectures
• Organize implementation around components 
(responsibilities)

• Each component is implemented independently
• Each component is

• independently replaceable, 
• independently updatable

• Components can be built as libraries, but more 
usually as web services

• Services communicate via a well-defined protocol
(typically REST/http, though others are possible)



Microservices: Schematic Example

Productivity App

Frontend

“Dumb”
App Server

Mod 1

REST service

Database

Mod 2

REST service

Database

Mod 3

REST service

Database

Mod 4

REST service

Database

Mod 5

REST service

Database

Mod 6

REST service

Database

REST

Todos
NodeJS, MongoDB

Mailer
Java, MySQL

Logins
Google Service

Search Engine

Java, Neo4J

Analytics

C#, SQLServer

Social Crawler

Python, MongoDB

Different languages, 
different operating 
systems



Microservices are (a) highly scalable and (b) 
trendy
• Microservices at Netflix:

• 100s of microservices
• 1000s of daily production changes
• 10,000s of instances
• BUT:
• only 10s of operations engineers

https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-
every-time-you-hit-play-3a40c9be254b 

https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b


Microservice Advantages and Disadvantages
• Advantages

• services may scale differently, so can be 
implemented on hardware and software 
appropriate for each

• services are independent (yay for 
interfaces!) so can be developed and 
deployed independently

• Disadvantages
• Shared data?
• Requires high availability
• Service discovery?
• Data consistency?
• Overall system complexity



Microservices vs Monoliths

higher is better

https://martinfowler.com/microservices/

https://martinfowler.com/microservices/


Learning Goals for this Lesson
• You should now be able to 

• Recognize a few common software 
architectures

• Discuss some of the tradeoffs of scalability, 
performance, and fault tolerance between 
these architectures


	CS 4530: Fundamentals of Software Engineering��Module 11.1: Distributing Processing
	Learning Goals for this Lesson
	Distributed Software Architectures
	Review: Challenges of Distributed Systems
	Questions to Ask About Distributed Architectures?
	A brief survey of distributed architectures
	1. The Monolith Architecture Relies on a Single Server
	Monolithic Architectures Struggle to Scale
	Replication Alone is Not The Answer
	2. Tiered Architectures
	A tiered architecture is like a layered architecture, only distributed
	3. Pipeline Architectures
	Pipeline Architectures
	4. Microservice Architectures
	Microservices: Schematic Example
	Microservices are (a) highly scalable and (b) trendy
	Microservice Advantages and Disadvantages
	Microservices vs Monoliths
	Learning Goals for this Lesson

